Platform and Code Analysis

|dentifying system components and properties

Start Week 2 -

Review

Any questions on what we covered last week?

Platforms

Recent years has seen a proliferation of many different devices and platforms. The first step to reverse
engineering one is understanding the platform.

When analyzing a device we ask a variety of questions.

» Hardware: What kind of device is it? What hardware components does it have?
» Operating System: What's the operating system? What version is it? Has it been modified?

= Applications: What services does it run? What ports? What dependencies?

Platforms

Hardware

The first step is usually understanding the hardware.

o HN2411CG

Platforms

Operating System

Some devices run the firmware directly (Arduino, Network Card, Motherboard, SSD, some |OT devices), but

these days most have an operating system, whose primary purpose is providing an interface between user
applications and the hardware.

Operating System Architecture

Most operating systems follow this general architecture.

User Applications Application 1

Application 2

Application 3

Application N

User Space

Kernel Space

System Call Interface

Kernel

Process Mgmt

Memory Mgmt

File System

Nl At arArl Cao~L
. INCLWOUOIK OldLK
_ Linux

Review

Test Your Comprehension

Here's some questions.

» What's the difference between user and kernel mode?
» What's the interface between user and kernel mode?
= Which of these are handled by the user processes vs. the kernel?
= printf formatting
= Command parsing
= Process creation
= Heap management

» Device drivers

Platforms

Linux

Since most customized platforms run a linux variant, we'll focus on it as our operating system for platform
analysis.

WEe'll look at

= Versioning

= File system locations to triage

= Application triage

System Versions

One critical piece of information for most platforms is its version.

Where can | find the operating system version?

$ cat /etc/issue
Ubuntu 24.04.1 LTS \n \1

$ cat /etc/os-release

NAME="Ubuntu"

VERSION="24.04.1 LTS (Noble Numbat)"
ID=ubuntu

ID_LIKE=debian

PRETTY_NAME="Ubuntu 24.04.1 LTS"
VERSION_ID="24.04"

Where can | find the kernel version?

$ cat /proc/version
Linux version 5.9.0-41-generic (buildd@...) (gcc (Ubuntu 13.3.0-6ubuntu2) 13.3.0) #41-Ubuntu SMP PREEMPT_DYNAMIC Fri Aug 16

What can | do with this information?

Linux

https://www.exploit-db.com/exploits/50808

Linux Directory Structure

When analyzing a linux platform, it's useful to have a general understanding of the directory structure.

Some things to look for.

v / Root directory
= Where are user files (documents, downloads, etc)? . bin Essential binaries
= Where are the executables? > sbin System binaries
= Where are libraries like libc? B etc Configuration files
= Where's the list of users/groups? g 1T Rl RSl
= Where are password hashes? g usr User programs
> var Variable data
= Where might | find other key material? _
> tmp Temporary files
> opt Optional software
> proc Process information
> Sys System information
> dev Device files

> boot Boot files

Linux

Application Versions

What are some ways we might get an application’s version?

For a Binary File

$ strings launchctl | grep -i "version
Darwin Bootstrapper Control Interface Version 7.0.0: Fri Jul 11 20:01:57 PDT 2025; root:libxpc_executables-2894.140.12~26/1
[%s]: entitlements blob has unexpected version %lld

$ strings bash | grep -i version
GNU bash, version %s-%s
display-shell-version
version, type “enable -n test'. On systems supporting dynamic
BASH_VERSION
Version information for this Bash.
The type of CPU this version of Bash is running under.

Configuration Files

= Sometimes have useful information

= No rules here

Linux

Startup Scripts

To get a comprehensive understanding of a system’s services, it's useful to start with the system boot scripts.

systemd

/etc/systemd/system/myapp.service
[Unit]

Description=MyApp service
After=network-online.target
Wants=network-online.target

[Service]

Tuna-cimnla

initd

#!/bin/sh
/etc/init.d/myapp
#H# BEGIN INIT INFO

Provides: myapp

Required-Start: $remote_fs $syslog $network
Required-Stop: $remote_fs $syslog $network
Default-Start: 2345

Nafanl+_C+nn- n 1 A

Lab 1

Firmware startup analysis.

Lab 1

What to look for

You may want to further analyze an application you discover. In the rest of this course we'll mostly be
analyzing compiled applications, but sometimes you’ll have source available if it's written in a scripting
language or is open source.

= | anguages
= Frameworks
» Dependencies

= \Versions

= Public vulnerabilities

Analysis Strategies

There's a variety of strategies for analyzing source code.

m» Reading through the code: openitin vscode
= Running the application

= python3 -m http.server

" npm run dev
= Code analysis tools

= | arge language model

= Query langauges like CodeqQL

Code Analysis

Lab 2

https://hacs408e.umd.edu/schedule/week-02/lab-2/

Lab 2

https://hacs408e.umd.edu/schedule/week-02/lab-2/

Homework

First homework is due next week.

| will be in Nevada wilderness from Thursday through next Monday.

