
7a85 dabd 8b48 892c a7c3 4cb4 e24c 3b40

8e66 2eb8 7ac1 a36d 95dc b150 8b84 3d02

782e 32bf d9d7 f400 f1ad 7fac b258 6fc6

e966 c004 d7d1 d16b 024f 5805 ff7c b47c

7a85 dabd 8b48 892c a7ad 7fac b258 6fc6

7a85 dabd 8b48 892c a7ad 7fac b258 6fc6

e966 c004 d7d1 d16b 024f 5805 ff7c b47c

371b f798 90fb 1861 2d53 e282 bb5e 8cd0

7aea 31e9 9659 d7d9 f6ad 7fac b258 6fc6

Binary Analysis II

Assembly, calling conventions, and dynamic analysis

Start Week 4

Assembly Review

Common Architectures

Intel x86/x86_64: Used by most desktop computers

ARM: Used by mobile devices, IOT devices, and (increasingly) desktop computers

MIPS: Used mostly by IOT devices

Low-level programming language that is translated into the the architecture’s byte-code. Here we will use the

x86_64 architecture.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Registers

General purpose: rax , rbx , rcx , rdx , rsi , rdi , rsp , rbp , r8 - r15

Special purpose: program counter, counters, flags, floating point arithmetic, etc.

8-bit register

16-bit register

32-bit register

64-bit register

80-bit register

128-bit register

256-bit register

512-bit register

ZMM0 YMM0 XMM0 ZMM1 YMM1 XMM1

ZMM2 YMM2 XMM2 ZMM3 YMM3 XMM3

ZMM4 YMM4 XMM4 ZMM5 YMM5 XMM5

ZMM6 YMM6 XMM6 ZMM7 YMM7 XMM7

ZMM8 YMM8 XMM8 ZMM9 YMM9 XMM9

ZMM10 YMM10 XMM10 ZMM11 YMM11 XMM11

ZMM12 YMM12 XMM12 ZMM13 YMM13 XMM13

ZMM14 YMM14 XMM14 ZMM15 YMM15 XMM15

ZMM16 ZMM17 ZMM18 ZMM19 ZMM20 ZMM21 ZMM22 ZMM23

ZMM24 ZMM25 ZMM26 ZMM27 ZMM28 ZMM29 ZMM30 ZMM31

ST(0) MM0 ST(1) MM1

ST(2) MM2 ST(3) MM3

ST(4) MM4 ST(5) MM5

ST(6) MM6 ST(7) MM7

CW FP_IP FP_DP FP_CS

SW

TW

FP_DS

FP_OPC FP_DP FP_IP

RAXEAXAXAHAL

RBXEBXBXBHBL

RCXECXCXCHCL

RDXEDXDXDHDL

R8R8DR8WR8B

R9R9DR9WR9B

R10R10DR10WR10B

R11R11DR11WR11B

R12R12DR12WR12B

R13R13DR13WR13B

R14R14DR14WR14B

R15R15DR15WR15B

RBPEBPBPBPL RDIEDIDIDIL RIPEIPIP

RSIESISISIL RSPESPSPSPL

CR0

CR1

CR2

CR3

CR3

MSW

CR4

CR5

CR6

CR7

CR8

CR9

CR10

CR11

CR12

CR13

CR14

CR15 MXCSR

DR0

DR1

DR2

DR3

DR4

DR5

DR6

DR7

DR8

DR9

DR10

DR11

DR12

DR13

DR14

DR15

CS SS DS

ES FS GS

GDTR IDTR

TR LDTR

RFLAGSEFLAGSFLAGS

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

General Purpose Registers

Name 64-bit 32-bit 16-bit Conventional Use

Accumulator rax eax ax Used for the return value of functions

Base rbx ebx bx Used as a pointer to data

Counter rcx ecx cx Used in loops and shift operations

Data rdx edx dx Used in I/O operations and arithmetic

Stack Pointer rsp esp sp Points to the top of the stack

Base Pointer rbp ebp bp Points to the base of the current stack frame

These registers may be used for any purpose but generally follow these conventions.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Moving Data Around

Push data on onto the stack.

Displacements.

Move immediates and other data between registers and the stack.

mov eax, 0x01 ;put 1 into eax

mov [eax], 0x01 ;put 1 into the address in eax

mov eax, [esi] ;put contents of address (esi)

push eax ;put contents of eax on top of stack

push 0x01 ;put 1 on top of stack

 ; and inc the stack pointer

pop eax ;put contents top of the stack into eax,

 ; and dec the stack pointer

; [base + index*size + offset]

; size can only be 1,2,4,8

mov eax, [arr + esi*4 + 0]

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Moving Data Around
Load effective address does not access memory with the displacement operator! It only does the pointer

arithmetic with no dereference!

lea eax, ecx ;invalid

lea eax, [ecx] ;valid, equivalent to mov eax, ecx

lea eax, [ecx + edx] ;mov eax, ecx + edx*1 (implicit 1)

lea eax, [ecx + edx*3] ;invalid, valid numbers are 1,2,4,8

lea eax, [eax + edx*4] ;can be thought of as

 ; eax = (DWORD *)eax[edx] why?

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Comparisons and Branching

Comparison Instructions

Conditional Jumps

Common flags used by comparisons

Assembly provides instructions for comparing values and controlling program flow based on the results.

cmp eax, ebx ;compare eax with ebx (sets flags)

test eax, eax ;bitwise AND of eax with itself (sets flags)

je addr ; or jz -- if zero flag is set (equal)

jne addr ; or jnz -- if zero flag is not set (not equal)

jg addr ; or ja -- if greater - signed or unsigned

jl addr ; or jb -- if less - signed or unsigned

jge addr ; -- if greater or equal to

jle addr ; -- if less or equal to

CF (Carry Flag) -- used to indicate carry in arithmetic operation

ZF (Zero Flag) -- if a value is zero or comparison equals 0

SF (Sign Flag) -- if negative

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Assembly Practice
The following examples are adapted from this book of assembly riddles.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Assembly Practice 1

Different ways of setting a register to zero.

Let’s walk through each line.

mov rdx,0

xor eax,eax

and esi,0

sub edi,edi

push 0

pop rbp

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Assembly Practice 2

rax = 0x300

What value ends up in rax after this code executes?

main:

 mov rax, 0x100

 mov rbx, 0x200

 cmp rax, rbx

 je equal_label

 mov rax, 0x300

 jmp end_label

equal_label:

 mov rax, 0x400

end_label:

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Assembly Practice 3

Computes Fibonacci numbers by swapping rax and rbx each loop, adding them to produce the next term in

rax, decrementing rcx until zero. The loop executes three times, so rax = 1, 1, 2.

What value ends up in rax after this code executes?

mov rax, 0x0

mov rbx, 0x1

mov rcx, 0x3

loop_start:

 test rcx, rcx

 jle loop_end

 xchg rax, rbx

 add rax, rbx

 dec rcx

 jg loop_start

loop_end:

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Application Binary Interface (ABI)

How general purpose registers are used

Calling conventions

Data types sizes and layouts

Symbols and linkage rules

System call interfaces

etc

An ABI defines how compiled code interacts at runtime. This includes:

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

System V ABI

www.sco.com/developers/gabi/latest/contents.html

Defines the calling convention for x86_64 architecture, specifying how functions are called and how registers

are used. It’s the standard for Linux and includes the ELF format.

System V Application Binary Interface - DRAFT - 10 June
2013

Contents

Revision History

Chapter 4 - Object Files

Introduction
File Format
Data Representation

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

https://www.sco.com/developers/gabi/latest/revision.html
https://www.sco.com/developers/gabi/latest/ch4.intro.html
https://www.sco.com/developers/gabi/latest/ch4.intro.html#file_format
https://www.sco.com/developers/gabi/latest/ch4.intro.html#data_representation

System V ABI

Function Arguments

Arguments are passed in registers in this order:

1. rdi - 1st argument

2. rsi - 2nd argument

3. rdx - 3rd argument

4. rcx - 4th argument

5. r8 - 5th argument

6. r9 - 6th argument

Additional arguments are passed on the stack.

Return Values

rax - Integer return value

rdx:rax - 128-bit return value

xmm0 - Floating point return value

The ABI defines how calling conventions and return values are passed.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Comparing different calling conventions

Aspect cdecl (32-bit) System V (64-bit)

Arguments All on stack (right-to-left) First 6 in registers, others on stack

Return Values

Integer: eax

64-bit: edx:eax

128-bit: Not supported

Floating point: Not supported

Integer: rax

64-bit: rdx:rax

128-bit: rdx:rax

Floating point: xmm0

Why might newer calling conventions use registers instead of the stack for passing arguments?

Comparison of 32-bit and 64-bit calling conventions.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Register Volatility

Volatile Registers

Caller-saved - Values may be modified by called

functions

rax - Return value

rcx - 4th argument

rdx - 3rd argument

rsi - 2nd argument

rdi - 1st argument

r8-r11 - other arguments

Non-Volatile Registers

Callee-saved - Values must be preserved by called

functions

rbx - Must be preserved

rbp - Frame pointer

rsp - Stack pointer

r12 - Must be preserved

r13 - Must be preserved

r14 - Must be preserved

r15 - Must be preserved

By convention, some registers are expected to be preserved across function calls and some are not.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Virtual Memory Layout

Kernel - Usually situated at a high address

Stack - Grows downward

Heap - Managed by allocator but roughly grows

upward

Data - At a low address

Code - At a low address

Last week we talked about the sections and segments. Here’s a broader view of the memory layout.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Dynamic Analysis

Command Description

gdb ./program Start GDB with program

run Start execution

quit Exit GDB

help Show help

info registers Show all registers

info breakpoints List breakpoints

break main Set breakpoint at main

Last week we introduced static analysis. This can be laborious for large binaries, so it’s useful to analyze a

program when it’s running. Debugging with GDB is one strategy.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

GDB Commands

1. What command shows the current instruction pointer?

info registers rip or x/i $rip

2. How do you set a breakpoint at the main function?

break main or b main

3. How do you set a breakpoint at 0x400000 ?

break *0x400000 or b *0x400000

4. How do you continue execution after hitting a breakpoint?

continue or c

Do we remember GDB commands?

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

GDB Commands

5. What’s the difference between step and next ?

step goes into function calls, next steps over them

6. What does x/s $rdi do?

Examines the memory pointed to by RDI as a string

7. How do you examine memory at address 0x401000 as hex?

x/x 0x401000

8. What command sets the value of RAX to 0?

set $rax = 0

Do we remember GDB commands?

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

GEF Plugin
To aid debugging for reverse engineering we’ve set up the gef plugin for GDB. It provides a number of new

commands and a new view.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Lab 1

Using GDB.

https://hacs408e.umd.edu/labs/week-03/lab-1/

86
MINUTES

Ends at 6:15 PM

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

https://hacs408e.umd.edu/labs/week-03/lab-1/

Tracing

Data written to stdout / stderr

Changes to the system file system

Library function calls

System calls

Debugging is an appropriate solution for fine-grained or precise analysis. For faster results it’s sometimes

useful to trace only specific aspects of your program’s behavior.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Library Loading

User Applications Application 1

↓

Application 2

↓

Application 3

↓

... Application N

↓

User Libraries libselinux.so

↓

libclang.so

↓

... lib*.so

↓

libpthread.so

↓

libc.so

↓

... lib*.so

↓

System Call Interface

Kernel

Processes may load dynamic libraries that provide shared functionality.

Process Mgmt Memory Mgmt File System Network Stack Audio Device Mgmt

User Space

Kernel Space

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Library and System Call Tracing

ltrace tracing library calls

strace tracing system calls

Tracing the library and system calls within processes can provide useful information. On linux the following

utilities support this.

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

Lab 2

https://hacs408e.umd.edu/schedule/week-04/lab-2/

171
MINUTES

Ends at 7:40 PM

Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

https://hacs408e.umd.edu/schedule/week-04/lab-2/

Homework

Quiz 1 is next week at the beginning of class.

Homework 2 is due next week.

› › › › › › ›Assembly System V Loading Debugging Lab 1 Tracing Lab 2 Homework

