Binary Analysis |l

Assembly, calling conventions, and dynamic analysis

Start Week 4 -

Assembly Review

Low-level programming language that is translated into the the architecture’'s byte-code. Here we will use the
x86_64 architecture.

Common Architectures

®» Intel x86/x86_64: Used by most desktop computers

= ARM: Used by mobile devices, IOT devices, and (increasingly) desktop computers
= MIPS: Used mostly by IOT devices

Assembly

Registers

m» General purpose: rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8 -ri5

m Special purpose: program counter, counters, flags, floating point arithmetic, etc.

[zvm0 [YMMO [XMMo]| zMM1 [YMM1 [XMM1]| | ST(0)[MMO || ST(1) [MM1]
(zMm2 [ymm2 XMM2]| zMM3 [YMM3 [MM3]| [ST(2) [MM2 || ST(3) [MM3 |
(zZMma [YMM4 [XMM4]| zMM5 [YMM5 [XMM5]| [ST(4) [MM4 || ST(5) [MM5 |
(ZMmM6 [YMM6 [XMM6]| zMM7 [YMM7 [xMM7]| | ST(6) [MM6 || ST(7) [MM7]

[EEgAXEAX|RAX| [z veo] Re|[Euavzor12] | CRO || CR4 |
[EEexeex|RBX| =] w=o] R9|[ERfuoR13| | CR1 || CRS |
[EEIcXEX|RCX| [euoooR 10| [Eusaecr14] | CR2 || CR6 |
[EEDXEoXRDX| R 1 [FRsvrasoras| [cR3 | CR7 |

|zMM8 [YMM8 [XMMB || ZMM9 [YMM9 _[xMMm9 | [Ex2BPEBPRBP| [DIEDI RDI| [P EP[RIP| [CR3 |[CRS |
|zMM10 [YMM10 [xMM10]| zMM11 [YMM11 [xmmi]| | cw | Fp_ip|[FP_DP|FP_cs| [LSIEs| RsI| [ErdSPESPRSP)
[ZMm12 [YMM12 [XMM12]| ZMM13 [YMM13 [XMM13]| | sw |

’ZMM14 YMM14 H ZMM15 YMM15 ‘ ’ W ‘ B 8-bitregister || 32-bit register || 80-bit register [256-bit register CR11

B 16-bit register || 64-bit register || 128-bit register] 512-bit register

’ ZMMIGH ZMM17H ZMM18H ZMM19H ZMMZOH ZMM21H ZMMZZH ZMMZS‘ ’FP_DS‘ CR12
’ZMM24HZMM25H ZMM26H ZMM27H ZMM28H ZMMZQH ZMMSOH ZMM31‘ ’FP_OPCHFP_DPH FP_|P‘ ’ CS H SS H DS ‘ ’ GDTR H IDTR ‘ ’ DRO H DR6 ‘ ’CRB‘
| Es || Fs | s || TR || LDTR | ; DR1 H DR7 } ;CR14 } |
[rssJerscdRFLAGS|

| DR4 | DR10]| DR12 | DR14 |
| DR5 | DR11][DR13 | DR15 |

Assembly

General Purpose Registers

These registers may be used for any purpose but generally follow these conventions.

Name 64-bit 32-bit 16-bit Conventional Use

Accumulator rax eax ax Used for the return value of functions
Base rbx ebx bx Used as a pointer to data

Counter rcx ecx CcX Used in loops and shift operations
Data rdx edx dx Used in I/O operations and arithmetic
Stack Pointer rsp esp sp Points to the top of the stack

Base Pointer rbp ebp bp Points to the base of the current stack frame

Assembly

Moving Data Around

Move immediates and other data between registers and the stack.

mov eax, 0x01 ;put 1 into eax
mov [eax], 0x01 ;put 1 into the address in eax
mov eax, [esi] ;put contents of address (esi)

Push data on onto the stack.

push eax ;put contents of eax on top of stack
push 0x01 ;put 1 on top of stack
; and inc the stack pointer

pop eax ;put contents top of the stack into eax,
; and dec the stack pointer

Displacements.

; [base + index*size + offset]
; Size can only be 1,2,4,8
mov eax, [arr + esix4 + 0]

Moving Data Around

Load effective address does not access memory with the displacement operator! It only does the pointer
arithmetic with no dereference!

lea eax, ecx ;invalid
lea eax, [ecx] ;valid, equivalent to mov eax, ecx

lea eax, [ecx + edx] ;mov eax, ecx + edxx1 (implicit 1)
lea eax, [ecx + edx*3] ;invalid, valid numbers are 1,2,4,8

lea eax, [eax + edx*4] ;can be thought of as
; eax = (DWORD *)eax[edx] why?

Comparisons and Branching

Assembly provides instructions for comparing values and controlling program flow based on the results.

Comparison Instructions

cmp eax, ebx
test eax, eax

Conditional Jumps

je addr
jne addr
jg addr
jl addr
jge addr
jle addr

Common flags used by comparisons

CF (Carry Flag) -- used to indicate carry in arithmetic operation
ZF (Zero Flag) -- if a value is zero or comparison equals 0
SF (Sign Flag) -- if negative

Assembly

Assembly Practice

The following examples are adapted from this book of assembly riddles.

[0x16]

xor rax, rbx

t) xor rbx, rcx
EE£££80000000 mov rsi,rax
% add rsi, rbx
cmove rax, rbx

rax, rbx

rax,rsi

[0x16]

Assembly

Assembly Practice 1

Let's walk through each line.

mov rdx, 0
xor eax, eax
and esi,0
sub edi,edi
push 0

pop rbp

Different ways of setting a register to zero.

Assembly Practice 2

What value ends up in rax after this code executes?

main:
mov rax, 0x100
mov rbx, 0x200
cmp rax, rbx
je equal_label

mov rax, 0x300
jmp end_label

equal_label:
mov rax, 0x400
end_label:

rax = 0x300

Assembly Practice 3

What value ends up in rax after this code executes?

mov rax, 0x0
mov rbx, 0x1
mov rcx, 0x3
loop_start
test rcx, rcx
jle Tloop_end
xchg rax, rbx
add rax, rbx
dec rcx
jg loop_start
loop_end

Computes Fibonacci numbers by swapping rax and rbx each loop, adding them to produce the next term in

rax, decrementing rcx until zero. The loop executes three times, so rax =1, 1, 2.

Assembly

Application Binary Interface (ABI)

An ABI defines how compiled code interacts at runtime. This includes:

= How general purpose registers are used
= Calling conventions

m Data types sizes and layouts

= Symbols and linkage rules

m System call interfaces

= etc

System V

System V ABI

Defines the calling convention for x86_64 architecture, specifying how functions are called and how registers
are used. It's the standard for Linux and includes the ELF format.

()) & www.sco.com/developers/gabi/latest/contents.html

System V Application Binary Interface - DRAFT - 10 June
2013

Contents

Revision History

Chapter 4 - Object Files

o Introduction
« File Format
« Data Representation

System V

https://www.sco.com/developers/gabi/latest/revision.html
https://www.sco.com/developers/gabi/latest/ch4.intro.html
https://www.sco.com/developers/gabi/latest/ch4.intro.html#file_format
https://www.sco.com/developers/gabi/latest/ch4.intro.html#data_representation

System V ABI

The ABI defines how calling conventions and return values are passed.

Function Arguments Return Values

) ,) _ = rax - Integer return value
Arguments are passed in registers in this order:

m rdx:rax - 128-bitreturn value

rdi - lstargument xmm@ - Floating point return value

rsi - 2nd argument

rdx - 3rd argument

1
2
3
4. rcx - 4th argument
5. r8 - 5th argument
6

r9 - 6th argument

Additional arguments are passed on the stack.

System V

Comparing different calling conventions

Comparison of 32-bit and 64-bit calling conventions.

Aspect cdecl (32-bit) System V (64-bit)
Arguments All on stack (right-to-left) First 6 in registers, others on stack
Integer: eax Integer: rax
64-bit: edx:eax 64-bit: rdx:rax
Return Values _)
128-bit: Not supported 128-bit: rdx:rax
Floating point: Not supported Floating point: xmm@

Why might newer calling conventions use registers instead of the stack for passing arguments?

System V

Register Volatility

By convention, some registers are expected to be preserved across function calls and some are not.

Volatile Registers

Caller-saved - Values may be modified by called
functions

" rax - Returnvalue

= rcx - 4th argument
= rdx - 3rdargument
"= rsi -2ndargument
= rdi - lstargument

= r8-rl1ll - other arguments

Assembly

Non-Volatile Registers

Callee-saved - Values must be preserved by called

functions

rbx - Must be preserved
rbp - Frame pointer
rsp - Stack pointer
r12 - Must be preserved
r13 - Must be preserved
ril4 - Must be preserved

r15 - Must be preserved

Virtual Memory Layout

Last week we talked about the sections and segments. Here's a broader view of the memory layout.

Assembly

Kernel - Usually situated at a high address
Stack - Grows downward

Heap - Managed by allocator but roughly grows
upward

Data - At a low address

Code - At a low address

Jmp to entry point

I I e L e

Relocations

Kernel
Environment
Stack
i Arguments
————— Mo Interpreter
—» mapping lib1.so
area
,—; lib2.s0
Heap
: Header
Data section 1

Dynamic Analysis

Last week we introduced static analysis. This can be laborious for large binaries, so it's useful to analyze a
program when it's running. Debugging with GDB is one strategy.

Command Description

gdb ./program Start GDB with program
run Start execution

quit Exit GDB

help Show help

info registers Show all registers
info breakpoints List breakpoints

break main Set breakpoint at main

Debugging

GDB Commands

Do we remember GDB commands?

1. What command shows the current instruction pointer?
info registers rip or x/i $rip

2. How do you set a breakpoint at the main function?

break main or b main

3. How do you set a breakpoint at 0x400000 ?

break *0x400000 or b *0x400000

4. How do you continue execution after hitting a breakpoint?

continue or c

Debugging

GDB Commands

Do we remember GDB commands?
5. What's the difference between step and next ?
step goes into function calls, next steps over them
6. What does x/s $rdi do?
Examines the memory pointed to by RDI as a string
7. How do you examine memory at address 0x401000 as hex?

X/x 0x401000

8. What command sets the value of RAX to 0?

set $rax = 0

Debugging

GEF Plugin

: 0x0
: 0x0
: 0X00007Fffff7ffcca0 0x0004095d00000000
: 0x0
0x0000000000000000
: >
: Ox00007Fffff7dd1b78 > 0x0000000000000000
: 0x20000

: Ox00007Ffff7fec700 0x000Q7ffff7fec70@ > [loop detected]
: Ox1

: 0x0

: Ox246

: 0x0000000000000001
: 0x0
: 0x0
[carry PARITY adjust ZERO sign trap INTERRUPT direction overflow resume virtualx86 identification]

: 0x002b : 0x0033 : 0x0000 : 0x0000 : 0x0000 : 0x0000

: 0x0000000000000000 ¢ $rsp

: 0x0000000000000000
"myfile.txt"

: 0x0000000000007478 ("xt"?)

Lab 1

Using GDB.

https://hacs408e.umd.edu/labs/week-03/lab-1/

Lab 1

https://hacs408e.umd.edu/labs/week-03/lab-1/

Tracing

Debugging is an appropriate solution for fine-grained or precise analysis. For faster results it's sometimes
useful to trace only specific aspects of your program’s behavior.

m Data written to stdout / stderr
= Changes to the system file system

» Library function calls

m System calls

Library Loading

Processes may load dynamic libraries that provide shared functionality.

User Applications Application 1 Application 2 Application 3 Application N
! l l l

l l l
l l l
User Space

Kernel Space

System Call Interface

Kernel
Memory Mgmt File System Network Stack

Library and System Call Tracing

Tracing the library and system calls within processes can provide useful information. On linux the following

utilities support this.

m ltrace tracing library calls

" strace tracing system calls

Lab 2

https://hacs408e.umd.edu/schedule/week-04/lab-2/

Lab 2

https://hacs408e.umd.edu/schedule/week-04/lab-2/

Homework

Homework 2 is due next week.

Quiz 1 is next week at the beginning of class.

