Network Protocols

Protocols, handshakes, and packet analysis

Start Week 5 —

Quiz
= Available on Elms

= Mostly multiple choice

= Work on your own

= No internet or notes are allowed

» Good luck

Open Systems Interconnection (OSI|) Model

Application Layer (7
e
Presentation Layer (6)
Session Layer (5)
Transport Layer (4)
Network Layer (3)
Data Link Layer (2)
B
Physical Layer (1)

How do | transmit unstructured data?

The physical layer is responsible for the transmission of raw, unstructured data bits over a physical medium,
defining the electrical, mechanical, and functional specifications for devices to connect to that medium.

m Ethernet cables
» Fiber optics

m Wireless transmitters

= Signal repeaters

How do | transfer data between two nodes?

The data link layer provides the functional and procedural means to transfer data between network entities
and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

» Ethernet Protocol
= Hosts may be connected with ethernet cables

» Hosts are identified by 48-bit MAC-address addresses

Functional Layers

How do | route data across networks?

The network layer is responsible for packet forwarding including routing through intermediate routers,
enabling any-to-any connectivity between hosts on different networks.

= |P Protocol
= Devices are identified by a 32-bit (IPv4) or 128-bit (IPv6) address

Functional Layers

How do | ensure data delivery?

The transport layer provides communication services for applications within a layered architecture of network
components and protocols, ensuring reliable data transfer.

» Popular transport layer protocols use port numbers
» Different applications may have one or more open ports
= TCP Protocol
= Connection oriented with sequencing and acknowledgements

= UDP Protocol

» Stateless, sends data in packets without maintaining session information

Functional Layers

How to | serve user applictions?

= The session layer provides the mechanism for opening, closing and managing a session between end-user
application processes, including authentication and authorization.

= The presentation layer is responsible for the delivery and formatting of information to the application layer
for further processing or display, including encryption and compression.

= The application layer is the OSI layer closest to the end user, which means both the OSI application layer

and the user interact directly with the software application.

Functional Layers

Packets

The fundamental transmission units of many network protocols are referred to as packets. These generally
consist of two elements: a header and a payload.

» Headers specify protocol specific parameters (like packet number, destination address, payload type, etc.)
= The payload may contain data or the header for another protocol

= This convention allows for layers of encapsulation

Packets

Ethernet Frame

The Ethernet frame is the fundamental unit of data transmission in Ethernet networks.

Ethernet Frame Structure () Labels [JColors

0000 ff ff ff ff ff ff 00 50 56 c0 66 68 8 60 ... PV.....
0010 45 00 00 3c la 2b 40 00 12 34 56 78 E..<.+@..4Vx

Network Packet

The Internet Protocol (IP) packet provides network-layer addressing and routing.

IPv4 packet
IPv4 Packet Structure () Labels [Colors
0000 45 00 00 3c 00 0O 40 00 40 01 0O 00 cO a8 01 01 E..<..Q.Q.......
0010 cO a8 01 64 ...d

IPv6 Packet

IPv6 Packet Structure () Labels [JColors

0000 60 00 00 0O 00 00 OO 00 OO 20 3a

Packets

Transport Segment

Transport layer protocols provide end-to-end communication services.

The Transmission Control Protocol (TCP) provides reliable, connection-oriented communication.

TCP Segment Structure () Labels []JColors

0000 08 00 00 50 00 00 GO 01 0O 00 0O OO 50 02 00 00 ...P
0010 00 00 00 00

The User Datagram Protocol (UDP) provides connectionless, unreliable communication.

UDP Datagram Structure () Labels []JColors

0000 08 00 00 35 00 1c 00 00 12 34 56 78 9a bc de f0O ...5

Packets

HT TP Request

The Hypertext Transfer Protocol (HTTP) request is the application-layer protocol for web communication.

HTTP Request Structure () Labels [JColors

0000 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 Od Oa GET / HTTP/1.1..
0010 48 6f 73 74 3a 20 65 78 61 6d 70 6¢C Host: exampl

Ethernet, IP, TCP, and HT TP

A complete network packet showing all layers from Ethernet frame to HT TP request.

Complete Network Packet

0000
0010
0020
0030
0040
0050

ff
00
co
50
48
3a

ff ff ff ff ff 00
3c 00 50 00 00 40
a8 01 64 08 00 00
02 00 00 GO 00 00
54 54 50 2f 31 2e
20 65 78 61 6d 70

Packets

50 56 cO 00 08 08 00 45 00
00 40 06 00 00 cO a8 01 01
50 00 00 00 01 00 GO 00 00
00 47 45 54 20 2f 20

31 0d 0a 48 6f 73 74

6C

(] Labels

....... PV.....E

<.P..@.@.......

o R
P.o...ot. GET /

HTTP/1.1..Host

: exampl

(JColors

OS Network Stack Implementation

The operating system implements the network stack across different layers, with each layer handled by specific

components.

Layer

Application (7)

Transport (4)

Network (3)

Data Link (2)

Physical (1)

Handled By

User applications

Kernel TCP/IP stack

Kernel IP stack

Network drivers

Hardware/drivers

Packets

Examples

HTTP, FTP, DNS

TCP, UDP

IP routing, ICMP

Ethernet, WiFi, PPP

NICs, wireless adapters

OS Support

System libraries

Network subsystem

Routing tables

Interface drivers

Device drivers

World Wide Web

» \Web servers usually serve content over HTTP/HTTPS
m Servers can be identified by IP addresses, but are more easily accessed by domain names
= For example, example.com
= The mapping from domain names to ip addresses is provided by the Domain Name System (DNS)
protocol

= (Can be queried with dig <domain name>

World Wide Web

Wireshark

Popular tool for packet introspection.

= Walkthrough?

Lab 1

Packet analysis.

https://hacs408e.dev/labs/week-05/lab-1/

Lab 1

https://hacs408e.dev/labs/week-05/lab-1/

Handshakes

The TCP connection establishment process involves a
three-way handshake between client and server.

= SYN: Client initiates connection with sequence
number

m SYN-ACK: Server responds with its sequence

= ACK: Client acknowledges server’s SYN to

complete handshake

Client Server

TCP Connection Establishment

SYN (seq=x)

v

Client sends SYN packet
with initial sequence number

SYN-ACK (seq=y, ack=x+1)

A

Server responds with
SYN-ACK packet

ACK (seq=x+1, ack=y+1)

v

Client acknowledges
server's SYN

Connection Established

Client Server

TCP Connectionin C

Creating a TCP socket connection to a server using C system calls.

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>

int main() {
// Create socket
int sockfd = socket(AF_INET, SOCK_STREAM, 0);

// Configure server address

struct sockaddr_in server_addr;

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(80); // HTTP port

inet_pton(AF_INET, "93.184.216.34", §server_addr.sin_addr); // example.com

// Connect to server

if (connect(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0) {
perror("Connection failed");
return 1;

HTTP GET Request in Python

Making an HTTP GET request using Python’s requests library.

import requests
import socket

Method 1: Using requests library (high-level)
def http_get_requests():
try:
response = requests.get('http://example.com')
print(f"Status Code: {response.status_code}")
print(f"Headers: {response.headers}")
print(f"Content: {response.text[:200]}...")
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")

Method 2: Using socket library (low-level)
def http_get_socket():
Create socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

try:

Connect to server
sock.connect(('93.184.216.34"', 80)) # example.com

Lab 2

More packet analysis.

https://hacs408e.dev/schedule/week-05/lab-2/

Lab 2

https://hacs408e.umd.edu/schedule/week-05/lab-2/

Homework

Homework 3 is due in two week.

Quiz 2 is two weeks away.

