Y EWYEICER

Understanding Windows architecture, PE files, and

malware tradecraft

Start Week 6 —

Malware Objectives

It's the job of the reverse engineer to discover the objectives of a malware sample. One common objective is
for financial gain.

= Ransomware that encrypts data and demands a ransom payment

= |[nformation stealers that harvest credentials, cookies, or crypto walets
» Banking trojeans that inject in to browsers to hijack transactions

» Espionage by states of political, military, and other information

» Cyberattacks by states on critical infrastructure and military capabilities

Malware Platforms

= Malware can target many platforms
= Some sources report >95% of malware targets windows

m Next few weeks we'll be focused on windows

Operating System Architecture

Most concepts from Linux carry over, but Windows layers them differently.

User Applications
Win32 App UWP App Console Tool
l l l l

Windows API
kernel32.dllL user32.dll gdi32.dll advapi32.dll ws2_32.dlL
NTAPI
ntdll.dll kernelbase.dll wow64.dll wow64win.dll api-ms-win-core-*dll
User Mode

Kernel Mode
Kernel & HAL
Hardware

Internals Executables Lab 1 Malware Lab 2 Homework

Review Windows Overview _

Quick comparison between Windows and Linux

= Dynamically loaded libraries are .d11s
» Drivers are usually .sys
= Main executable file format is the Portable Executable (PE)

= Main scripting language is powershell

Architecture

Windows Directory Structure

Overview of the file system. v C: System drive
> Windows Core 0S binaries
= System binaries in %SystemRoot% > Program Files 64-bit applications
» User data and Startup folders per profile > Program Files (x86) 32-bit applications
= Artifacts under ProgramData and AppData > ProgramData Machine-wide app data
> Users Profiles
> System Volume Information Restore points
> $Recycle.Bin Deleted file artifacts

> Logs Custom log locations (if present)

Architecture

Windows Registry Overview

The registry is a hierarchical database. v Registry Logical hive view
> HKLM Machine-wide settings
m Keys and subkeys act like folders; values store data > Tl Eerae neer e
such as REG_SZ , REG_DWORD , REG_BINARY > HKCR File associations & COM
= Backed by hive files in > HKU Mounted user profiles

%SystemRoot%\System32\Config plus per-user g 18 CRIE S L LA e G

NTUSER.DAT / USRCLASS.DAT

Architecture

Registry Entries to Watch

Registry Path
HKLM\SYSTEM\CurrentControlSet\Services

HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKCU\Software\Microsoft\Windows\CurrentVersion\Run
HKCU\Software\Classes\CLSID

HKCU\Software\Microsoft\Office*

Internals

Analyst Focus

Service/driver installs, malicious
autostarts

Shell, Userinit, GINA persistence

Machine-wide startup programs

User startup (per-profile persistence)

COM hijacking, shell extension abuse

Macro trust, add-in persistence

Portable Executable Overview

PE files start with a DOS header that points to the NT
headers containing loader metadata.

typedef struct _IMAGE_DOS_HEADER

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

[F7aYaYaN

e_magic
e_chlp
e_cp
e_crlc
e_cparhdr
e_minalloc
e_maxalloc
e_ss

e_sp
e_csum

Executables

typedef struct _IMAGE_NT_HEADERS64
DWORD Signature
IMAGE_FILE_HEADER FileHeader
IMAGE_OPTIONAL_HEADER64 OptionalHeader
IMAGE_NT_HEADERS64

typedef struct _IMAGE_FILE_HEADER
WORD Machine
WORD NumberOfSections
DWORD TimeDateStamp
DWORD PointerToSymbolTable

NLIAPRA Ak c N L il AT~

PE Sections & Directories

Common Sections

= ., text - executable code

= _.rdata —imports, constants

= .data - initialized globals

m _pdata - exception handling (x64)
= .reloc - base relocations

" .rsrc -resources (icons, dialogs)

Executables

Data Directories

Import Table — DLL dependencies, function thunks
Export Table — provided APIs

Resource Table — embedded payloads

Relocation Table — ASLR support

TLSTable — thread local storage callbacks

Load Config — Control Flow Guard, SEH

Windows APl Reference

Provides useful information for the reverse engineer when these functions are imported.

® O@® o learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

Windows AP| Example

#tinclude <windows.h>
#tinclude <stdio.h>

int wmain() {
const wchar_t %path = L"C:\\\\Temp\\\\example.txt";

HANDLE file = CreateFileW(
path,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ,
nullptr,
OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
nullptr);

if (file = INVALID_HANDLE_VALUE) {
DWORD err = GetlLastError();
wprintf(L"CreateFile failed: %lu\n", err);
return 1;

}

const char payload[] = "Hello Windows API!\\r\\n";

NWNRN hvtacWrittan - M-

Lab 1

Portable Executable triage and header parsing.

https://hacs408e.umd.edu/labs/week-06/lab-1/

Lab 1

https://hacs408e.umd.edu/labs/week-06/lab-1/

Malware Analyst Focus Areas

The rapid pace of cyberattacks makes quick malware triage useful. We can discover a lot about a sample just
by running it and monitoring for file system changes, network activity, and registry changes.

= Payloads

» System modifications
m Persistence

= Command and control
= Evasion

= QOrigins

= Signatures

Malware

Lab 2

Windows malware behavior analysis.

https://hacs408e.umd.edu/labs/week-06/lab-2/

Lab 2

https://hacs408e.umd.edu/labs/week-06/lab-2/

Homework

= Homework due next week

= Quiz on networking basics next week

