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Malware I

Understanding Windows architecture, PE files, and

malware tradecraft

Start Week 6 



Malware Objectives

Ransomware that encrypts data and demands a ransom payment

Information stealers that harvest credentials, cookies, or crypto walets

Banking trojeans that inject in to browsers to hijack transactions

Espionage by states of political, military, and other information

Cyberattacks by states on critical infrastructure and military capabilities

It’s the job of the reverse engineer to discover the objectives of a malware sample. One common objective is

for financial gain.
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Malware Platforms

Malware can target many platforms

Some sources report >95% of malware targets windows

Next few weeks we’ll be focused on windows
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Operating System Architecture

User Applications

Windows API

NTAPI

Kernel & HAL

Hardware

Most concepts from Linux carry over, but Windows layers them differently.

Win32 App

↓

UWP App

↓

Service Host

↓

... Console Tool

↓

kernel32.dll user32.dll gdi32.dll advapi32.dll ws2_32.dll

ntdll.dll kernelbase.dll wow64.dll wow64win.dll api-ms-win-core-*.dll

ntoskrnl.exe win32k.sys acpi.sys ndis.sys

CPU Memory Storage Network Peripherals

User Mode

Kernel Mode
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Quick comparison between Windows and Linux

Dynamically loaded libraries are .dlls

Drivers are usually .sys

Main executable file format is the Portable Executable ( PE )

Main scripting language is powershell

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework



Windows Directory Structure

Overview of the file system.

System binaries in %SystemRoot%

User data and Startup folders per profile

Artifacts under ProgramData  and AppData

📁 C: System drive

▶ 📁 Windows Core OS binaries

▶ 📁 Program Files 64-bit applications

▶ 📁 Program Files (x86) 32-bit applications

▶ 📁 ProgramData Machine-wide app data

▶ 📁 Users Profiles

▶ 📁 System Volume Information Restore points

▶ 📁 $Recycle.Bin Deleted file artifacts

▶ 📁 Logs Custom log locations (if present)

▶
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Windows Registry Overview

The registry is a hierarchical database.

Keys and subkeys act like folders; values store data

such as REG_SZ , REG_DWORD , REG_BINARY

Backed by hive files in

%SystemRoot%\System32\Config  plus per-user

NTUSER.DAT / USRCLASS.DAT

📁 Registry Logical hive view

▶ 📁 HKLM Machine-wide settings

▶ 📁 HKCU Current user hive

▶ 📁 HKCR File associations & COM

▶ 📁 HKU Mounted user profiles

▶ 📁 HKCC Current hardware profile

▶
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Registry Entries to Watch

Registry Path Analyst Focus

HKLM\SYSTEM\CurrentControlSet\Services
Service/driver installs, malicious

autostarts

HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon
Shell, Userinit, GINA persistence

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run Machine-wide startup programs

HKCU\Software\Microsoft\Windows\CurrentVersion\Run User startup (per-profile persistence)

HKCU\Software\Classes\CLSID COM hijacking, shell extension abuse

HKCU\Software\Microsoft\Office\* Macro trust, add-in persistence
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Portable Executable Overview

PE files start with a DOS header that points to the NT

headers containing loader metadata.

typedef struct _IMAGE_DOS_HEADER {
  WORD   e_magic;    // "MZ"

  WORD   e_cblp;

  WORD   e_cp;

  WORD   e_crlc;

  WORD   e_cparhdr;

  WORD   e_minalloc;

  WORD   e_maxalloc;

  WORD   e_ss;

  WORD   e_sp;

  WORD   e_csum;

WORD e ip;

typedef struct _IMAGE_NT_HEADERS64 {
  DWORD Signature;          // "PE\0\0"

  IMAGE_FILE_HEADER FileHeader;

  IMAGE_OPTIONAL_HEADER64 OptionalHeader;

} IMAGE_NT_HEADERS64;

typedef struct _IMAGE_FILE_HEADER {
  WORD  Machine;

  WORD  NumberOfSections;

  DWORD TimeDateStamp;

  DWORD PointerToSymbolTable;

DWORD NumberOfSymbols;

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework



PE Sections & Directories

Common Sections

.text  – executable code

.rdata  – imports, constants

.data  – initialized globals

.pdata  – exception handling (x64)

.reloc  – base relocations

.rsrc  – resources (icons, dialogs)

Data Directories

Import Table – DLL dependencies, function thunks

Export Table – provided APIs

Resource Table – embedded payloads

Relocation Table – ASLR support

TLSTable – thread local storage callbacks

Load Config – Control Flow Guard, SEH
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Windows API Reference

learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

Provides useful information for the reverse engineer when these functions are imported.
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Windows API Example

#include <windows.h>

#include <stdio.h>

int wmain() {

  const wchar_t *path = L"C:\\\\Temp\\\\example.txt";

  HANDLE file = CreateFileW(

      path,

      GENERIC_READ | GENERIC_WRITE,
      FILE_SHARE_READ,

      nullptr,

      OPEN_ALWAYS,

      FILE_ATTRIBUTE_NORMAL,

      nullptr);

  if (file == INVALID_HANDLE_VALUE) {
    DWORD err = GetLastError();

    wprintf(L"CreateFile failed: %lu\n", err);

    return 1;

  }

  const char payload[] = "Hello Windows API!\\r\\n";
DWORD bytesWritten = 0;
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Lab 1

Portable Executable triage and header parsing.

https://hacs408e.umd.edu/labs/week-06/lab-1/

86
MINUTES

Ends at 6:15 PM
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Malware Analyst Focus Areas

Payloads

System modifications

Persistence

Command and control

Evasion

Origins

Signatures

The rapid pace of cyberattacks makes quick malware triage useful. We can discover a lot about a sample just

by running it and monitoring for file system changes, network activity, and registry changes.
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Lab 2

Windows malware behavior analysis.

https://hacs408e.umd.edu/labs/week-06/lab-2/

171
MINUTES

Ends at 7:40 PM
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Homework

Homework due next week

Quiz on networking basics next week
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