
7a85 dabd 8b48 892c a7c3 4cb4 e24c 3b40

8e66 2eb8 7ac1 a36d 95dc b150 8b84 3d02

782e 32bf d9d7 f400 f1ad 7fac b258 6fc6

e966 c004 d7d1 d16b 024f 5805 ff7c b47c

7a85 dabd 8b48 892c a7ad 7fac b258 6fc6

7a85 dabd 8b48 892c a7ad 7fac b258 6fc6

e966 c004 d7d1 d16b 024f 5805 ff7c b47c

371b f798 90fb 1861 2d53 e282 bb5e 8cd0

7aea 31e9 9659 d7d9 f6ad 7fac b258 6fc6

Malware I

Understanding Windows architecture, PE files, and

malware tradecraft

Start Week 6

Malware Objectives

Ransomware that encrypts data and demands a ransom payment

Information stealers that harvest credentials, cookies, or crypto walets

Banking trojeans that inject in to browsers to hijack transactions

Espionage by states of political, military, and other information

Cyberattacks by states on critical infrastructure and military capabilities

It’s the job of the reverse engineer to discover the objectives of a malware sample. One common objective is

for financial gain.

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Malware Platforms

Malware can target many platforms

Some sources report >95% of malware targets windows

Next few weeks we’ll be focused on windows

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Operating System Architecture

User Applications

Windows API

NTAPI

Kernel & HAL

Hardware

Most concepts from Linux carry over, but Windows layers them differently.

Win32 App

↓

UWP App

↓

Service Host

↓

... Console Tool

↓

kernel32.dll user32.dll gdi32.dll advapi32.dll ws2_32.dll

ntdll.dll kernelbase.dll wow64.dll wow64win.dll api-ms-win-core-*.dll

ntoskrnl.exe win32k.sys acpi.sys ndis.sys

CPU Memory Storage Network Peripherals

User Mode

Kernel Mode

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Quick comparison between Windows and Linux

Dynamically loaded libraries are .dlls

Drivers are usually .sys

Main executable file format is the Portable Executable (PE)

Main scripting language is powershell

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Windows Directory Structure

Overview of the file system.

System binaries in %SystemRoot%

User data and Startup folders per profile

Artifacts under ProgramData and AppData

📁 C: System drive

▶ 📁 Windows Core OS binaries

▶ 📁 Program Files 64-bit applications

▶ 📁 Program Files (x86) 32-bit applications

▶ 📁 ProgramData Machine-wide app data

▶ 📁 Users Profiles

▶ 📁 System Volume Information Restore points

▶ 📁 $Recycle.Bin Deleted file artifacts

▶ 📁 Logs Custom log locations (if present)

▶

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Windows Registry Overview

The registry is a hierarchical database.

Keys and subkeys act like folders; values store data

such as REG_SZ , REG_DWORD , REG_BINARY

Backed by hive files in

%SystemRoot%\System32\Config plus per-user

NTUSER.DAT / USRCLASS.DAT

📁 Registry Logical hive view

▶ 📁 HKLM Machine-wide settings

▶ 📁 HKCU Current user hive

▶ 📁 HKCR File associations & COM

▶ 📁 HKU Mounted user profiles

▶ 📁 HKCC Current hardware profile

▶

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Registry Entries to Watch

Registry Path Analyst Focus

HKLM\SYSTEM\CurrentControlSet\Services
Service/driver installs, malicious

autostarts

HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon
Shell, Userinit, GINA persistence

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run Machine-wide startup programs

HKCU\Software\Microsoft\Windows\CurrentVersion\Run User startup (per-profile persistence)

HKCU\Software\Classes\CLSID COM hijacking, shell extension abuse

HKCU\Software\Microsoft\Office* Macro trust, add-in persistence

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Portable Executable Overview

PE files start with a DOS header that points to the NT

headers containing loader metadata.

typedef struct _IMAGE_DOS_HEADER {
 WORD e_magic; // "MZ"

 WORD e_cblp;

 WORD e_cp;

 WORD e_crlc;

 WORD e_cparhdr;

 WORD e_minalloc;

 WORD e_maxalloc;

 WORD e_ss;

 WORD e_sp;

 WORD e_csum;

WORD e ip;

typedef struct _IMAGE_NT_HEADERS64 {
 DWORD Signature; // "PE\0\0"

 IMAGE_FILE_HEADER FileHeader;

 IMAGE_OPTIONAL_HEADER64 OptionalHeader;

} IMAGE_NT_HEADERS64;

typedef struct _IMAGE_FILE_HEADER {
 WORD Machine;

 WORD NumberOfSections;

 DWORD TimeDateStamp;

 DWORD PointerToSymbolTable;

DWORD NumberOfSymbols;

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

PE Sections & Directories

Common Sections

.text – executable code

.rdata – imports, constants

.data – initialized globals

.pdata – exception handling (x64)

.reloc – base relocations

.rsrc – resources (icons, dialogs)

Data Directories

Import Table – DLL dependencies, function thunks

Export Table – provided APIs

Resource Table – embedded payloads

Relocation Table – ASLR support

TLSTable – thread local storage callbacks

Load Config – Control Flow Guard, SEH

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Windows API Reference

learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

Provides useful information for the reverse engineer when these functions are imported.

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Windows API Example

#include <windows.h>

#include <stdio.h>

int wmain() {

 const wchar_t *path = L"C:\\\\Temp\\\\example.txt";

 HANDLE file = CreateFileW(

 path,

 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,

 nullptr,

 OPEN_ALWAYS,

 FILE_ATTRIBUTE_NORMAL,

 nullptr);

 if (file == INVALID_HANDLE_VALUE) {
 DWORD err = GetLastError();

 wprintf(L"CreateFile failed: %lu\n", err);

 return 1;

 }

 const char payload[] = "Hello Windows API!\\r\\n";
DWORD bytesWritten = 0;

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Lab 1

Portable Executable triage and header parsing.

https://hacs408e.umd.edu/labs/week-06/lab-1/

86
MINUTES

Ends at 6:15 PM

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

https://hacs408e.umd.edu/labs/week-06/lab-1/

Malware Analyst Focus Areas

Payloads

System modifications

Persistence

Command and control

Evasion

Origins

Signatures

The rapid pace of cyberattacks makes quick malware triage useful. We can discover a lot about a sample just

by running it and monitoring for file system changes, network activity, and registry changes.

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

Lab 2

Windows malware behavior analysis.

https://hacs408e.umd.edu/labs/week-06/lab-2/

171
MINUTES

Ends at 7:40 PM

Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

https://hacs408e.umd.edu/labs/week-06/lab-2/

Homework

Homework due next week

Quiz on networking basics next week

› › › › › › › ›Review Windows Overview Architecture Internals Executables Lab 1 Malware Lab 2 Homework

