
f4a1 8bd0 23cf 79e0 1174 c39a 26d7 b901

9f02 651a 88d3 1ab5 ef4c a918 6b7c 3ffe

3a1e e823 4ff9 02d8 becb 5f90 a4d2 67aa

f4a1 8bd0 23cf 79e0 1174 c39a 26d7 b901

Malware Tradecraft

Malware evasion and stealth techniques

Start Week 7

Quiz

31
MINUTES

Ends at 5:20 PM

Good luck.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Malware Tradecraft

Hide behavior from the user

Hide behavior from anti-virus

Weaken protections like firewall rules

Prevent uninstallation

Slow down the reverse engineering process

Unlike most software, malware authors apply techniques to evade detection, delay analysis, hide software

functionality, bypass security measures, and persist on systems without the user’s knowledge.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Other Uses

License checking to authorize software usage

Anti-cheat systems for games

Protecting proprietary protocols (e.g. Skype)

Protect proprietary security features from malware

These techniques are mostly used by malware, but can sometimes be seen in other software.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Example 1: Skype

Custom packer, erases and re-writes its own import table at runtime

Portions of the binary are stored ciphered and decrypted before execution

Checksum’s its own code to detect modifications like breakpoints

Custom network-layer RC4-based obfuscator

Applies custom arithmetic compression to packets

https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf

Skype went to great lengths to frustrate potential developers of open-source compatible clients.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf

Example 2: Patch Guard

Periodically hashes things like kernel text, page tables to detect issues

Code and data are encrypted at runtime

Symbol names are misleading

In-memory layout randomizes across boots and builds to frustrate modification

Runs on multiple threads that trigger on irregular intervals

Confusing control flow (e.g. using exceptions intentionally)

May crash the system on upon detecting breakpoints or timing anomalies

Secretive Windows security feature meant to protect the integrity of the kernel. If it detects kernel

modifications that violate policy it may crash the system with a CRITICAL_STRUCTURE_CORRUPTION

exception.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Objectives

Anti-static analysis (import hiding, string obfuscation, packing, code obfuscation)

Anti-dynamic analysis (timing, anti-debug tricks, anti-VM tricks)

Hiding (dll injection, process hollowing, function hooking)

Today we’ll cover three broad categories of techniques for frustrating analysis.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Hiding Imports

In this example we won’t see the import. What might we see during triage, instead?

Remember last class when we looked at the import table for cross references? Malware can hide imports by

loading the libraries and finding the target symbols dynamically.

#include <windows.h>

typedef BOOL (WINAPI *LP_ISWOW64PROCESS)(HANDLE, PBOOL);

int main(void) {

 HMODULE kernel32 = LoadLibraryA("kernel32.dll");

 LP_ISWOW64PROCESS isWow64 = (LP_ISWOW64PROCESS)

 GetProcAddress(kernel32, "IsWow64Process");

 BOOL wow64 = FALSE;

 if (isWow64 && isWow64(GetCurrentProcess(), &wow64) && wow64) {
 // Branch when running under emulation (common sandbox target)

 ExitProcess(0);

 }

 return 0;

}

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Hiding Import Strings

Malware iterates DLL export tables, hashing each name, and compares against a hard-coded value

Hash algorithms are short (XOR, rotate, djb2-style) to minimize footprint

API hashing removes plaintext strings while keeping dynamic resolution flexible.

DWORD hash_name(const char *name) {
 DWORD hash = 0x811C9DC5; // FNV-1a seed
 while (*name) {

 hash ^= (BYTE)(*name++ | 0x20); // case-insensitive
 hash *= 0x01000193;
 }

 return hash;

}

FARPROC resolve_by_hash(HMODULE module, DWORD target_hash) {

 PIMAGE_EXPORT_DIRECTORY exports = get_export_directory(module);

 DWORD *names = RVA_TO_PTR(module, exports->AddressOfNames);

 WORD *ordinals = RVA_TO_PTR(module, exports->AddressOfNameOrdinals);

 DWORD *functions = RVA_TO_PTR(module, exports->AddressOfFunctions);

 for (DWORD i = 0; i < exports->NumberOfNames; ++i) {

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

String Munging
We may want to hide other strings from analysis as well. We can do this by encrypting strings and decrypting

them at runtime.

static const BYTE blob[] = {0x1F, 0x0C, 0x47, 0x09, 0x01, 0x5A, 0x00};

void decode(char *dst) {
 for (size_t i = 0; blob[i] != 0; ++i) {
 BYTE key = (BYTE)(0x55 + (i * 7));
 dst[i] = (char)(blob[i] ^ key);
 }

}

int main(void) {

 char buffer[8] = {0};
 decode(buffer);

 printf("%s\\n", buffer); // Prints "cmd.exe"

 SecureZeroMemory(buffer, sizeof(buffer));
 return 0;

}

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Packing

Few functions found in a large binary

Large data region that appears encrypted

Large high-entropy region

To hide all code/data, a malware author may use a packer. These will encrypt the entire program except for a

stub at the entry point, which decrypts the other sections before execution.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Source Obfuscation

Minifiers that strip whitespace/comments and renamne identifiers

AST transformers reorder logic, split strings, etc.

Example: not all minification is malicious

Example: NPM Supply Chain Attack

Source obfuscation is use for malware in interpreted langauges.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

http://localhost:12445/google.com
https://gist.github.com/sindresorhus/2b7466b1ec36376b8742dc711c24db20

Code Transformations

Example: Obfuscated C Competition

Example: movfuscator

In practice malware authors will write LLVM transformations to obfuscate compiled code

Allows for easy polymorphism: malware looks different every compilation which makes it hard to

signature

Example: Chris Domas

For compiled langauges source transformations can still be useful to obfuscate program logic.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

https://blog.aerojockey.com/iocccsim/
https://github.com/xoreaxeaxeax/movfuscator
https://youtu.be/HlUe0TUHOIc?t=1833

Anti-Debugging

Timing: compare QueryPerformanceCounter , GetTickCount , RDTSC values before/after loops

API checks: IsDebuggerPresent , CheckRemoteDebuggerPresent , NtQueryInformationProcess ,

ptrace on linux

Exception abuse: INT 2D , OutputDebugString , single-step manipulation

Hardware: check CPUID hypervisor bit, look for vmware or vbox devices

Privilege: attempt SeDebugPrivilege escalation, bail if unavailable

Malware might probe its environment to check if a debugger is present.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Beyond Debuggers

Sandbox detection: look for short uptime, few processes, synthetic usernames, RAM size

I/O tricks: write to temp files or registry keys and verify persistence (VM snapshots revert state)

Network timing: enforce C2 beacons that detect latency spikes caused by instrumentation

How might malware detect it’s in a virtual machine?

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Lab 1

https://hacs408e.umd.edu/labs/week-07/lab-1/

86
MINUTES

Ends at 6:15 PM

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

https://hacs408e.umd.edu/labs/week-07/lab-1/

DLL Injection & Side-Loading

Drop a malicious DLL next to a trusted binary that auto-loads plug-ins or helpers

Abuse DLL search order so a spoofed name (e.g., version.dll) is picked before the real dependency

Reflectively load the DLL from memory to avoid touching disk after initial compromise

Legitimate UI/process masks malicious behavior while inheriting its privileges

Malware often tries to hide inside legitimate programs to borrow trust and stay persistant. One way to do this

is to force legitimate programs to load a malicious dynamic library.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Remote Shellcode Injection
Injecting shellcode into another program.

#include <windows.h>

int inject_shellcode(DWORD pid, const unsigned char *shellcode, SIZE_T size) {
 HANDLE process = OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION |
 PROCESS_VM_OPERATION | PROCESS_VM_WRITE | PROCESS_VM_READ,
 FALSE, pid);

 if (!process) {

 return 1;

 }

 LPVOID remote = VirtualAllocEx(process, NULL, size, MEM_COMMIT | MEM_RESERVE,
 PAGE_EXECUTE_READWRITE);

 if (!remote) {

 CloseHandle(process);

 return 2;

 }

 if (!WriteProcessMemory(process, remote, shellcode, size, NULL)) {

 VirtualFreeEx(process, remote, 0, MEM_RELEASE);

 CloseHandle(process);

t 3

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Other Techniques
Novel techniques are common so you’ll have to investigate API usage. What does this do?

#include <windows.h>

int main(void) {

 const char dllPath[] = "C:\\\\Windows\\\\Temp\\\\payload.dll";
 DWORD targetPid = 4321; // replace with target process ID

 HANDLE process = OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION |
 PROCESS_VM_OPERATION | PROCESS_VM_WRITE,
 FALSE, targetPid);

 if (!process) {

 return 1;

 }

 LPVOID remote = VirtualAllocEx(process, NULL, sizeof(dllPath),
 MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
 if (!remote) {

 CloseHandle(process);

 return 2;

 }

if (!W it P M (t dllP th i f(dllP th) NULL)) {

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Hooking Fundamentals

With what we’ve learned in class, what might be some approaches to this?

Replace portions of the binary with malicious shellcode

Inserting a jmp instruction at the beginning of a function to redirect execution

Modifying the PLT/GOT to point to malicious functions

Another common malware technique is function hooking, where malware modifies a process to call back to

the malware when certain functionality is hit.

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

Lab 2

https://hacs408e.umd.edu/labs/week-07/lab-2/

171
MINUTES

Ends at 7:40 PM

Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

https://hacs408e.umd.edu/labs/week-07/lab-2/

Midterm

Midterm presentations are next week!

› › › › › › ›Introduction Obfuscation Anti-Debugging Lab 1 Hiding and Evasion Hooking Lab 2 Midterm

