Malware Tradecraft

Malware evasion and stealth techniques

Start Week 7 -

f4al 8bd0 23cf 79e0 1174 c39a 26d7 b9o0l
9f02 651a 88d3 lab5 ef4c a918 6b7c 3ffe

3ale e823 4ff9 02d8 becb 5f90 a4d2 67aa
f4al 8bdd 23cf 79e0 1174 c39a 26d7 b9oo1l

Quiz

Good luck.

Malware Tradecraft

Unlike most software, malware authors apply techniques to evade detection, delay analysis, hide software
functionality, bypass security measures, and persist on systems without the user’s knowledge.

= Hide behavior from the user

» Hide behavior from anti-virus

= \Weaken protections like firewall rules
= Prevent uninstallation

= Slow down the reverse engineering process

Introduction

Other Uses

These techniques are mostly used by malware, but can sometimes be seen in other software.

m License checking to authorize software usage
m» Anti-cheat systems for games
m Protecting proprietary protocols (e.g. Skype)

» Protect proprietary security features from malware

Introduction

Example 1: Skype

Skype went to great lengths to frustrate potential developers of open-source compatible clients.

m Custom packer, erases and re-writes its own import table at runtime

®» Portions of the binary are stored ciphered and decrypted before execution
m Checksum’s its own code to detect modifications like breakpoints

m Custom network-layer RC4-based obfuscator

= Applies custom arithmetic compression to packets

https:/mwww.blackhat.com/presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf

Introduction

https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf

Example 2: Patch Guard

Secretive Windows security feature meant to protect the integrity of the kernel. If it detects kernel
modifications that violate policy it may crash the system with a CRITICAL_STRUCTURE_CORRUPTION

exception.

» Periodically hashes things like kernel text, page tables to detect issues

= Code and data are encrypted at runtime

= Symbol names are misleading

= |n-memory layout randomizes across boots and builds to frustrate modification
= Runs on multiple threads that trigger on irregular intervals

= Confusing control flow (e.g. using exceptions intentionally)

= May crash the system on upon detecting breakpoints or timing anomalies

Introduction

Objectives

Today we'll cover three broad categories of techniques for frustrating analysis.

» Anti-static analysis (import hiding, string obfuscation, packing, code obfuscation)
= Anti-dynamic analysis (timing, anti-debug tricks, anti-VM tricks)

» Hiding (dll injection, process hollowing, function hooking)

Introduction

Hiding Imports

Remember last class when we looked at the import table for cross references? Malware can hide imports by
loading the libraries and finding the target symbols dynamically.

#tinclude <windows.h>

typedef BOOL (WINAPI *LP_ISWOW64PROCESS)(HANDLE, PBOOL);

int main(void) {
HMODULE kernel32 = LoadLibraryA("kernel32.d11");
LP_ISWOW64PROCESS isWow64 = (LP_ISWOW64PROCESS)
GetProcAddress(kernel32, "IsWow64Process');

BOOL wow64 = FALSE;
if (isWow64 &6 isWow64(GetCurrentProcess(), Swow64) &6 wow6s) {

// Branch when running under emulation (common sandbox target)
ExitProcess(0);

}

return 0;

In this example we won’t see the import. What might we see during triage, instead?

Hiding Import Strings
API hashing removes plaintext strings while keeping dynamic resolution flexible.

= Malware iterates DLL export tables, hashing each name, and compares against a hard-coded value

= Hash algorithms are short (XOR, rotate, djb2-style) to minimize footprint

DWORD hash_name(const char xname) {
DWORD hash = 0x811C9DC5;
while (xname) {
hash "= (BYTE)(*name++ | 0x20);
hash *= 0x01000193;
}
return hash;

}

FARPROC resolve_by_hash(HMODULE module, DWORD target_hash) {
PIMAGE_EXPORT_DIRECTORY exports = get_export_directory(module);
DWORD *names = RVA_TO_PTR(module, exports—>AddressOfNames);

WORD *ordinals = RVA_TO_PTR(module, exports—>AddressOfNameOrdinals);
DWORD *functions = RVA_TO_PTR(module, exports—>AddressOfFunctions);

for (DWORD i = 0; i < exports—NumberOfNames; ++i) {

Obfuscation

String Munging

We may want to hide other strings from analysis as well. We can do this by encrypting strings and decrypting
them at runtime.

static const BYTE blob[] = {0x1F, 0x0C, 0x47, 0x09, 0x01, 0x5A, 0x00};

void decode(char xdst) {
for (size_t i = @; blob[i] = 0; ++i) {
BYTE key = (BYTE)(@x55 + (i * 7));
dst[i] = (char)(blob[i] " key);
}
}

int main(void) {
char buffer[8] = {0};
decode(buffer);
printf("%s\\n", buffer); // Prints "cmd.exe"
SecureZeroMemory(buffer, sizeof(buffer));
return 0;

Packing

To hide all code/data, a malware author may use a packer. These will encrypt the entire program except for a
stub at the entry point, which decrypts the other sections before execution.

= Few functions found in a large binary
» | arge data region that appears encrypted
= | arge high-entropy region

Obfuscation

Source Obfuscation

Source obfuscation is use for malware in interpreted langauges.

= Minifiers that strip whitespace/comments and renamne identifiers
m AST transformers reorder logic, split strings, etc.

= Example: not all minification is malicious

Obfuscation

http://localhost:12445/google.com
https://gist.github.com/sindresorhus/2b7466b1ec36376b8742dc711c24db20

Code Transformations

For compiled langauges source transformations can still be useful to obfuscate program logic.

= Example: Obfuscated C Competition

= Example: movfuscator
® |n practice malware authors will write LLVM transformations to obfuscate compiled code
= Allows for easy polymorphism: malware looks different every compilation which makes it hard to
signature

= Example: Chris Domas

Obfuscation

https://blog.aerojockey.com/iocccsim/
https://github.com/xoreaxeaxeax/movfuscator
https://youtu.be/HlUe0TUHOIc?t=1833

Anti-Debugging
Malware might probe its environment to check if a debugger is present.

= Timing: compare QueryPerformanceCounter , GetTickCount , RDTSC values before/after loops

» API checks: IsDebuggerPresent , CheckRemoteDebuggerPresent , NtQueryInformationProcess,

ptrace on linux
» Exception abuse: INT 2D, OutputDebugString , single-step manipulation
» Hardware: check CPUID hypervisor bit, look for vmware or vbox devices

= Privilege: attempt SeDebugPrivilege escalation, bail if unavailable

Anti-Debugging

Beyond Debuggers

How might malware detect it's in a virtual machine?

= Sandbox detection: look for short uptime, few processes, synthetic usernames, RAM size
= |/O tricks: write to temp files or registry keys and verify persistence (VM snapshots revert state)

= Network timing: enforce C2 beacons that detect latency spikes caused by instrumentation

Anti-Debugging

Lab 1

https://hacs408e.umd.edu/labs/week-07/lab-1/

Lab 1

https://hacs408e.umd.edu/labs/week-07/lab-1/

DLL Injection & Side-Loading

Malware often tries to hide inside legitimate programs to borrow trust and stay persistant. One way to do this
is to force legitimate programs to load a malicious dynamic library.

= Drop a malicious DLL next to a trusted binary that auto-loads plug-ins or helpers
» Abuse DLL search order so a spoofed name (e.g., version.dll) is picked before the real dependency
m Reflectively load the DLL from memory to avoid touching disk after initial compromise

m | egitimate Ul/process masks malicious behavior while inheriting its privileges

Hiding and Evasion

Remote Shellcode Injection

Injecting shellcode into another program.

#include <windows.h

int inject_shellcode(DWORD pid, const unsigned char *shellcode, SIZE T size) {
HANDLE process = OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION |
PROCESS_VM_OPERATION | PROCESS_VM_WRITE | PROCESS_VM_READ,
FALSE, pid);
if (!process) {
return 1;

}

LPVOID remote = VirtualAllocEx(process, NULL, size, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);
if (!remote) {
CloseHandle(process);
return 2;

}

if (!WriteProcessMemory(process, remote, shellcode, size, NULL)) {
VirtualFreeEx(process, remote, @, MEM_RELEASE);
CloseHandle(process);

Hiding and Evasion

Other Techniques

Novel techniques are common so you’ll have to investigate APl usage. What does this do?

#tinclude <windows.h>

int main(void) {
const char dllPath[] = "C:\\\\Windows\\\\Temp\\\\payload.dll";
DWORD targetPid = 4321; // replace with target process ID

HANDLE process = OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION |
PROCESS_VM_OPERATION | PROCESS_VM_WRITE,
FALSE, targetPid);
if (!process) {
return 1;

}

LPVOID remote = VirtualAllocEx(process, NULL, sizeof(dllPath),
MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

if (!'remote) {
CloseHandle(process);
return 2;

Hooking Fundamentals

Another common malware technique is function hooking, where malware modifies a process to call back to
the malware when certain functionality is hit.

With what we've learned in class, what might be some approaches to this?

» Replace portions of the binary with malicious shellcode
® |nserting a jmp instruction at the beginning of a function to redirect execution

= Modifying the PLT/GOT to point to malicious functions

Hooking

Lab 2

https://hacs408e.umd.edu/labs/week-07/lab-2/

Lab 2

https://hacs408e.umd.edu/labs/week-07/lab-2/

Midterm

= Midterm presentations are next week!

