Binary Exploitation

Introduction to memory corruption

Start Week 9 —

f4al 8bd0 23cf 79e0 1174 c39a 26d7 b9o0l
9f02 651a 88d3 lab5 ef4c a918 6b7c 3ffe

3ale e823 4ff9 02d8 becb 5f90 a4d2 67aa
f4al 8bdd 23cf 79e0 1174 c39a 26d7 b9oo1l

Introduction to Exploitation

One common application of reverse engineering is for vulnerability analysis when the original program source
is unavailable. The practice of using a vulnerability to achieve a desired effect is called exploiting the
vulnerability.

Actors may exploit vulnerabilities to achieve a variety of ends.
= Denial of service attacks

» Cybercrime

= Espionage

= Cyber warfare

Introduction

Exploitation Activity
According to a 2024 report by Google.

o 2024 Attributed Zero-Day Exploitation
Zero-Day Exploitation of Popular End-User

Technologies in EZEl vs. EFZA

5.8% 29.4%
Net change Non-State Financially . State-Sponsored
Motivated Cluster Also RusSia o i Korea Espionage

Conducting Espionage

» [Russi
B weow +6 "
11.7%
Other UNC
Groups
3 -
6 Safari -8
v
o,
2 - 14.7% People’s
0 ios -7 State Sponsored Republic of
9 _ Espionage and China (PRC)
Financially Motivated
North Korea
i Android . Y
narol
W Andro 7
.
© o ;
1
e Firefox l +1 23.5%
0 Commercial
Surveillance
Vendors (CSVs)

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Example: NSO Group
An Israeli contractor that sells spyware to governments. Recently aquired by a U.S. company.

()) & googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

Project Zero

News and updates from the Project Zero team at Google

Search This

AN AAann Aivina intAa An NICN 2ArAa Aliql, iINMAceaasA AviAalAalt: DAarmmaAata CAAdA

Introduction

https://googleprojectzero.blogspot.com/

Exploit Marketplace

There are many public bounties for zero-day reports by companies looking to patch them and brokers looking
to sell them. Vulnerability and exploit analysis skills command high premiums.

Buyer Target software Price range
Crowdfense Multi-platform chains S10k-S7M
Apple i0S/macOS S2M-$5M
Google VRP (Chrome) Chrome browser S50k-S250k
Google VRP (Mobile) Android/Apps S30k-$300k

Microsoft (Hyper-V) Hyper-V $100k-$250k

Introduction

Memory Corruption

Languages like C and C++ are popular because they provide high performance and low-level control over
program execution. This flexibility and power can amplify security risks should a bug cause unsafe behavior.

e Memory corruption vulnerabilites are when a bug """

allows memory to be modified in unintended

Kernel Space
ways Stack

e Careful exploitation of these vulnerablilities can
be leveraged to many effects, including a denial of

mmap region, shared libraries

service, information leak, or remote code

execution

Heap

Data

l
T

0x00000000

Introduction _ Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Example 1

Where is the memory corruption bug?

#include <stdio.h>
#include <string.h>

void vuln(const char xinput) {
char buf[16];
strcpy(buf, input);
printf("%s\n", buf);

}

int main(int argc, char **argv) {
if (argc > 1) vuln(argv[1]);
return 0;

}

= Unbounded strcpy into fixed length buffer

= Where am | overwriting?

Example 2

Where is the memory corruption bug?

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void) {
size_t n = 16;
char xbuf = (char *)malloc(n);
if (!buf) return 1;
memset(buf, 0, n);

for (size t i = 0; i < n; +i) {
buf[i] = 'A";
}

printf("last=%c\n", buf[n-11);
free(buf);

m Off-by-one in loop condition (i <= n)

» Qut-of-bounds write to buf[n]

Example 3

Where is the memory corruption bug?

include <stdio.h
include <stdlib.h
include <string.h

define BUFFER_SIZE 4

char secret[BUFFER_SIZE 1234
char global[BUFFER_SIZE

void process_data(char =*p
for (int i = 0; i < sizeof(p); i++
globalli pli

free(p

= Doesn’t check if argument is provided
m Use xp afterfree

m Uses sizeof incorrectly. What size will it return? Where might memory be corrupted?

Memory Corruption

Example 4

Where is the memory corruption bug?

#include <stdio.h>
#tinclude <stdlib.h>
#include <stdint.h>

int max_buffer_size = 1024;

int main(int argc, char *%argv) {
if (argc < 1) return 0;

int n = (int)strtol(argv[1], NULL, 10);
if (n < max_buffer_size) {
size_t buffer_size = (size_t)n * sizeof(int);
int *arr = (int *)malloc(buffer_size);
// continue below
= Signed/unsigned confusion

m Cast to size_t turns negative into huge allocation size

Common Bugs

m Buffer overflow
m Use after free

m Double free

® |nteger overflow

Lab 1

https://hacs408e.umd.edu/labs/week-09/lab-1/

Lab 1

https://hacs408e.umd.edu/labs/week-09/lab-1/

Remote Code Execution

The holy grail of binary exploitation is remote code execution. These exploits allow us to run arbitrary code on
the victim machine, and generally takes the following form for memory corruption vulnerabilities.

= Writing some code we want to execute somewhere in the program
= Exploiting a memory corruption vulnerability to overwrite legitimate program data
m | everaging this overwrite to redirect execution to our chosen code

®» This code normally takes the form of "shellcode"

= There are many re-usable shellcodes online

Control Flow Hijacking

Control Flow Hijacking

The previous lab looked at using memory corruption to overwrite data. To gain remote code execution we
need to use this overflow to redirect execution.

» Function pointers stored in local variables (e.g. callbacks)
» Function pointers stored as global variables (e.g. the GOT)

m Return addresses on the stack

Control Flow Hijacking

Lab 2

https://hacs408e.umd.edu/labs/week-09/lab-2/

Lab 2

https://hacs408e.umd.edu/labs/week-09/lab-2/

Homework

. Next homework will be released soon

