Binary Exploitation

Introduction to memory corruption
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Introduction to Exploitation

One common application of reverse engineering is for vulnerability analysis when the original program source
is unavailable. The practice of using a vulnerability to achieve a desired effect is called exploiting the
vulnerability.

Actors may exploit vulnerabilities to achieve a variety of ends.
= Denial of service attacks

»  Cybercrime

= Espionage

= Cyber warfare
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Exploitation Activity
According to a 2024 report by Google.
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Example: NSO Group
An Israeli contractor that sells spyware to governments. Recently aquired by a U.S. company.

() ) & googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

Project Zero

News and updates from the Project Zero team at Google
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https://googleprojectzero.blogspot.com/

Exploit Marketplace

There are many public bounties for zero-day reports by companies looking to patch them and brokers looking
to sell them. Vulnerability and exploit analysis skills command high premiums.

Buyer Target software Price range
Crowdfense Multi-platform chains S10k-S7M
Apple i0S/macOS S2M-$5M
Google VRP (Chrome) Chrome browser S50k-S250k
Google VRP (Mobile) Android/Apps S30k-$300k

Microsoft (Hyper-V) Hyper-V $100k-$250k
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Memory Corruption

Languages like C and C++ are popular because they provide high performance and low-level control over
program execution. This flexibility and power can amplify security risks should a bug cause unsafe behavior.

e Memory corruption vulnerabilites are when a bug """

allows memory to be modified in unintended
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Example 1

Where is the memory corruption bug?

#include <stdio.h>
#include <string.h>

void vuln(const char xinput) {
char buf[16];
strcpy(buf, input);
printf("%s\n", buf);

}

int main(int argc, char **argv) {
if (argc > 1) vuln(argv[1]);
return 0;

}

=  Unbounded strcpy into fixed length buffer

= Where am | overwriting?



Example 2

Where is the memory corruption bug?

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void) {
size_t n = 16;
char xbuf = (char *)malloc(n);
if (!buf) return 1;
memset(buf, 0, n);

for (size t i = 0; i < n; +i) {
buf[i] = 'A";
}

printf("last=%c\n", buf[n-11);
free(buf);

m  Off-by-one in loop condition (i <= n)

»  Qut-of-bounds write to buf[n]



Example 3

Where is the memory corruption bug?

include <stdio.h
include <stdlib.h
include <string.h

define BUFFER_SIZE 4

char secret[BUFFER_SIZE 1234
char global[BUFFER_SIZE

void process_data(char =*p
for (int i = 0; i < sizeof(p); i++
globalli pli

free(p

= Doesn’t check if argument is provided
m Use xp afterfree

m Uses sizeof incorrectly. What size will it return? Where might memory be corrupted?

Memory Corruption



Example 4

Where is the memory corruption bug?

#include <stdio.h>
#tinclude <stdlib.h>
#include <stdint.h>

int max_buffer_size = 1024;

int main(int argc, char *%argv) {
if (argc < 1) return 0;

int n = (int)strtol(argv[1], NULL, 10);
if (n < max_buffer_size) {
size_t buffer_size = (size_t)n * sizeof(int);
int *arr = (int *)malloc(buffer_size);
// continue below
= Signed/unsigned confusion

m  Cast to size_t turns negative into huge allocation size



Common Bugs

m  Buffer overflow
m  Use after free

m Double free

® |nteger overflow




Lab 1

https://hacs408e.umd.edu/labs/week-09/lab-1/
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https://hacs408e.umd.edu/labs/week-09/lab-1/

Remote Code Execution

The holy grail of binary exploitation is remote code execution. These exploits allow us to run arbitrary code on
the victim machine, and generally takes the following form for memory corruption vulnerabilities.

= Writing some code we want to execute somewhere in the program
= Exploiting a memory corruption vulnerability to overwrite legitimate program data
m | everaging this overwrite to redirect execution to our chosen code

®»  This code normally takes the form of "shellcode"

=  There are many re-usable shellcodes online

Control Flow Hijacking



Control Flow Hijacking

The previous lab looked at using memory corruption to overwrite data. To gain remote code execution we
need to use this overflow to redirect execution.

»  Function pointers stored in local variables (e.g. callbacks)
»  Function pointers stored as global variables (e.g. the GOT)

m  Return addresses on the stack

Control Flow Hijacking



Lab 2

https://hacs408e.umd.edu/labs/week-09/lab-2/

Lab 2


https://hacs408e.umd.edu/labs/week-09/lab-2/

Homework

. Next homework will be released soon




