
f4a1 8bd0 23cf 79e0 1174 c39a 26d7 b901

9f02 651a 88d3 1ab5 ef4c a918 6b7c 3ffe

3a1e e823 4ff9 02d8 becb 5f90 a4d2 67aa

f4a1 8bd0 23cf 79e0 1174 c39a 26d7 b901

Binary Exploitation

Introduction to memory corruption

Start Week 9

Introduction to Exploitation

Actors may exploit vulnerabilities to achieve a variety of ends.

Denial of service attacks

Cybercrime

Espionage

Cyber warfare

One common application of reverse engineering is for vulnerability analysis when the original program source

is unavailable. The practice of using a vulnerability to achieve a desired effect is called exploiting the

vulnerability.

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Exploitation Activity
According to a 2024 report by Google.

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Example: NSO Group

googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

An Israeli contractor that sells spyware to governments. Recently aquired by a U.S. company.

News and updates from the Project Zero team at Google

Project ZeroProject Zero

W e d n e s d a y , D e c e m b e r 1 5 , 2 0 2 1

A deep dive into an NSO zero click iMessage exploit: Remote Code

Search This

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

https://googleprojectzero.blogspot.com/

Exploit Marketplace

Buyer Target software Price range

Crowdfense Multi-platform chains $10k–$7M

Apple iOS/macOS $2M–$5M

Google VRP (Chrome) Chrome browser $50k–$250k

Google VRP (Mobile) Android/Apps $30k–$300k

Microsoft (Hyper-V) Hyper-V $100k–$250k

There are many public bounties for zero-day reports by companies looking to patch them and brokers looking

to sell them. Vulnerability and exploit analysis skills command high premiums.

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Memory Corruption

Memory corruption vulnerabilites are when a bug

allows memory to be modified in unintended

ways

Careful exploitation of these vulnerablilities can

be leveraged to many effects, including a denial of

service, information leak, or remote code

execution

0xFFFFFFFF

0x00000000

Languages like C and C++ are popular because they provide high performance and low-level control over

program execution. This flexibility and power can amplify security risks should a bug cause unsafe behavior.

Kernel Space

Stack

↓

mmap region, shared libraries

↑

Heap

Data

Code

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Example 1

Unbounded strcpy into fixed length buffer

Where am I overwriting?

Where is the memory corruption bug?

#include <stdio.h>

#include <string.h>

void vuln(const char *input) {

 char buf[16];

 strcpy(buf, input);

 printf("%s\n", buf);

}

int main(int argc, char **argv) {

 if (argc > 1) vuln(argv[1]);

 return 0;

}

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Example 2

Off-by-one in loop condition (i <= n)

Out-of-bounds write to buf[n]

Where is the memory corruption bug?

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void) {

 size_t n = 16;

 char *buf = (char *)malloc(n);

 if (!buf) return 1;

 memset(buf, 0, n);

 for (size_t i = 0; i <= n; ++i) {

 buf[i] = 'A';

 }

 printf("last=%c\n", buf[n-1]);

 free(buf);

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Example 3

Doesn’t check if argument is provided

Use *p after free

Uses sizeof incorrectly. What size will it return? Where might memory be corrupted?

Where is the memory corruption bug?

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define BUFFER_SIZE 4

char secret[BUFFER_SIZE] = "1234";

char global[BUFFER_SIZE] = "____";

void process_data(char *p) {

 for (int i = 0; i < sizeof(p); i++) {

 global[i] = p[i];

 }

 free(p);

}

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Example 4

Signed/unsigned confusion

Cast to size_t turns negative into huge allocation size

Where is the memory corruption bug?

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

int max_buffer_size = 1024;

int main(int argc, char **argv) {

 if (argc < 1) return 0;

 int n = (int)strtol(argv[1], NULL, 10);

 if (n <= max_buffer_size) {

 size_t buffer_size = (size_t)n * sizeof(int);

 int *arr = (int *)malloc(buffer_size);

 // continue below

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Common Bugs

Buffer overflow

Use after free

Double free

Integer overflow

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Lab 1

https://hacs408e.umd.edu/labs/week-09/lab-1/

86
MINUTES

Ends at 6:15 PM

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

https://hacs408e.umd.edu/labs/week-09/lab-1/

Remote Code Execution

Writing some code we want to execute somewhere in the program

Exploiting a memory corruption vulnerability to overwrite legitimate program data

Leveraging this overwrite to redirect execution to our chosen code

This code normally takes the form of "shellcode"

There are many re-usable shellcodes online

The holy grail of binary exploitation is remote code execution. These exploits allow us to run arbitrary code on

the victim machine, and generally takes the following form for memory corruption vulnerabilities.

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Control Flow Hijacking

Function pointers stored in local variables (e.g. callbacks)

Function pointers stored as global variables (e.g. the GOT)

Return addresses on the stack

The previous lab looked at using memory corruption to overwrite data. To gain remote code execution we

need to use this overflow to redirect execution.

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

Lab 2

https://hacs408e.umd.edu/labs/week-09/lab-2/

171
MINUTES

Ends at 7:40 PM

Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

https://hacs408e.umd.edu/labs/week-09/lab-2/

Homework

Next homework will be released soon

› › › › › ›Introduction Memory Corruption Buffer Overflow Lab 1 Control Flow Hijacking Lab 2 Homework

